Skip to content

IX Lab Publications

IX Lab Publications

Note: list of publications is generated automatically with Zotpress. Thanks to Katie Seaborn for the useful plug-in!

Clicking on “(CITE” will upload citation to your bibliography management tool or allow you to save a .RIS file. 


Shi, L., Jayawardena, G., & Gwizdka, J. (2025). Pupillometric Analysis of Cognitive Load in Relation to Relevance and Confirmation Bias. To Appear in Proceedings of the 2025 Conference on Human Information Interaction and Retrieval. CHIIR, New York, NY, USA. Cite
Shi, L., Liu, H., Wong, Y., Mujumdar, U., Zhang, D., Gwizdka, J., & Lease, M. (2024). Argumentative Experience: Reducing Confirmation Bias on Controversial Issues through LLM-Generated Multi-Persona Debates (No. arXiv:2412.04629). arXiv. https://doi.org/10.48550/arXiv.2412.04629 Cite
Mishra, A., Shukla, S., Torres, J., Gwizdka, J., & Roychowdhury, S. (2024). Thought2Text: Text Generation from EEG Signal using Large Language Models (LLMs) (No. arXiv:2410.07507). arXiv. https://doi.org/10.48550/arXiv.2410.07507 Cite
Aliannejadi, M., Gwizdka, J., & Zamani, H. (2024). Interactions with Generative Information Retrieval Systems (No. arXiv:2407.11605). arXiv. http://arxiv.org/abs/2407.11605 Cite
Jones, W., Capra, R., Czerwinski, M., Dinneen, J. D., Gwizdka, J., & Karadkar, U. (2024). PIM 2024: The Information We Need, When We Need It…: As We Get Ever Closer, Is this Ideal Still Ideal? Proceedings of the 2024 Conference on Human Information Interaction and Retrieval, 438–440. https://doi.org/10.1145/3627508.3638333 Cite
Shi, L., & Gwizdka, J. (2024). The Effects of Confirmation Bias and Readability on Relevance Assessment: an Eye-tracking Study. In R. Riedl, J. vom Brocke, P.-M. Léger, A. B. Randolph, G. Müller-Putz, & F. D. Davis (Eds.), Information Systems and Neuroscience. Springer International Publishing. Cite
Gwizdka, J., & Rieh, S. Y. (2023). Report on the 8th ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2023). SIGIR Forum, 57(1), 9:1-9:7. https://doi.org/10.1145/3636341.3636353 Cite
Bautista, J. R., Zhang, Y., Gwizdka, J., & Chang, Y.-S. (2023). Consumers’ longitudinal health information needs and seeking: a scoping review. Health Promotion International, 38(4), daad066. https://doi.org/10.1093/heapro/daad066 Cite
Gwizdka, J., & Rieh, S. Y. (2023). Report on the 8th ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR 2023). SIGIR Forum, 57. Cite
Bautista, J. R., Zhang, Y., & Gwizdka, J. (2023). Correcting vaccine misinformation on social media: Effect of social correction methods on vaccine skeptics’ intention to take COVID-19 vaccine. New Media & Society, 14614448231169696. https://doi.org/10.1177/14614448231169697 Cite
Shi, L., Bhattacharya, N., Das, A., & Gwizdka, J. (2023). True or false? Cognitive load when reading COVID-19 news headlines: an eye-tracking study. Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, 107–116. https://doi.org/10.1145/3576840.3578290 Cite
Shi, L., Rahman, R., Melamed, E., Gwizdka, J., Rousseau, J. F., & Ding, Y. (2023). Using Explainable AI to Cross-Validate Socio-economic Disparities Among Covid-19 Patient Mortality (No. arXiv:2302.08605). arXiv. http://arxiv.org/abs/2302.08605 Cite
Gwizdka, J. (2023). NeuroIS at 15: What Were We Writing About? In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, A. B. Randolph, & G. Müller-Putz (Eds.), Information Systems and Neuroscience. Springer International Publishing. Cite
Gwizdka, J., & Rieh, S. Y. (Eds.). (2023). CHIIR ’23: Proceedings of the 2023 conference on human information interaction and retrieval. Association for Computing Machinery. Cite
Seaborn, K., Henderson, K., Gwizdka, J., & Chignell, M. (2022). A meta-review of psychological resilience during COVID-19. Npj Mental Health Research, 1(1), 1–9. https://doi.org/10.1038/s44184-022-00005-8 Cite
Bautista, J. R., Zhang, Y., & Gwizdka, J. (2022). Professional Identity and Perceived Crisis Severity as Antecedents of Healthcare Professionals’ Responses to Health Misinformation on Social Media. In M. Smits (Ed.), iConference 2022 (pp. 273–291). Springer International Publishing. https://doi.org/10.1007/978-3-030-96960-8_19 Cite
Bautista, J. R., Zhang, Y., & Gwizdka, J. (2022). Predicting healthcare professionals’ intention to correct health misinformation on social media. Telematics & Informatics. Cite
Gwizdka, J., Tessmer, R., Chan, Y.-C., Radhakrishnan, K., & Henry, M. (2022). Eye-gaze and mouse-movements on web search as indicators of cognitive impairment. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, A. B. Randolph, & G. Müller-Putz (Eds.), Information Systems and Neuroscience. Springer International Publishing. Cite
Shi, L., Bhattacharya, N., Das, A., Lease, M., & Gwizdka, J. (2022). The Effects of Interactive AI Design on User Behavior: An Eye-tracking Study of Fact-checking COVID-19 Claims. ACM SIGIR Conference on Human Information Interaction and Retrieval, 315–320. https://doi.org/10.1145/3498366.3505786 Cite
Chang, Y.-S., & Gwizdka, J. (2022). Perceived eHealth Literacy vis-a-vis Information Search Outcome: A Quasi-Experimental Study. ACM SIGIR Conference on Human Information Interaction and Retrieval, 305–309. https://doi.org/10.1145/3498366.3505825 Cite
Rubin, M., Bhattacharya, N., Gwizdka, J., Griffin, Z., & Telch, M. (2021). The influence of PTSD symptoms on selective visual attention while reading. Cognition and Emotion, 36(3), 527–534. https://doi.org/10.1080/02699931.2021.2016639 Cite
Bhattacharya, N., & Gwizdka, J. (2021). YASBIL: Yet Another Search Behaviour (and) Interaction Logger. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2585–2589. https://doi.org/10.1145/3404835.3462800 Cite
Seaborn, K., Chignell, M., & Gwizdka, J. (2021). Psychological resilience during COVID-19: a meta-review protocol. BMJ Open, 11(6), e051417. https://doi.org/10.1136/bmjopen-2021-051417 Cite
Chang, Y.-S., Zhang, Y., & Gwizdka, J. (2021). The effects of information source and eHealth literacy on consumer health information credibility evaluation behavior. Computers in Human Behavior, 115, 106629. https://doi.org/10.1016/j.chb.2020.106629 Cite
Bautista, J. R., Zhang, Y., & Gwizdka, J. (2021). Healthcare professionals’ acts of correcting health misinformation on social media. International Journal of Medical Informatics, 104375. https://doi.org/10.1016/j.ijmedinf.2021.104375 Cite
Bhattacharya, N., & Gwizdka, J. (2021). A Triangulation Perspective for Search as Learning. Proceedings of the Second International Workshop on Investigating Learning During (Web) Search (IWILDS) Co-Located with 30th ACM International Conference on Information and Knowledge Management (CIKM 2021). IWILDS’2021. Cite
Chang, Y.-S., Zhang, Y., & Gwizdka, J. (2021). Predicting Surrogates’ Health Information Seeking Behavior via Information Source and Information Evaluation. Proceedings of the Association for Information Science and Technology. ASIST’2021. Cite
Gwizdka, J. (2021). “Overloading” Cognitive (Work)Load:  What Are We Really Measuring? Information Systems and Neuroscience. NeuroIS Retreat 2021. Cite
Wu, D., Dong, J., Shi, L., Liu, C., & Ding, J. (2020). Credibility assessment of good abandonment results in mobile search. Information Processing & Management, 57(6), 102350. https://doi.org/10.1016/j.ipm.2020.102350 Cite
Bhattacharya, N., & Gwizdka, J. (2020). Visualizing and Quantifying Vocabulary Learning During Search. Proceedings of the First International Workshop on Investigating Learning During (Web) Search (IWILDS) Co-Located with 29th ACM International Conference on Information and Knowledge Management (CIKM 2020), 2699, 4. http://ceur-ws.org/Vol-2699/paper22.pdf Cite
Bhattacharya, N., Rakshit, S., & Gwizdka, J. (2020). Towards Real-time Webpage Relevance Prediction UsingConvex Hull Based Eye-tracking Features. ACM Symposium on Eye Tracking Research and Applications, 1–10. https://doi.org/10.1145/3379157.3391302 Cite
Bhattacharya, N., Rakshit, S., Gwizdka, J., & Kogut, P. (2020). Relevance Prediction from Eye-movements Using Semi-interpretable Convolutional Neural Networks. Proceedings of the 2020 Conference on Human Information Interaction and Retrieval, 223–233. https://doi.org/10.1145/3343413.3377960 Cite
Tsai, T.-H., Lin, W.-Y., Chang, Y.-S., Chang, P.-C., & Lee, M.-Y. (2020). Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLOS ONE, 15(1), e0227270. https://doi.org/10.1371/journal.pone.0227270 Cite
Jia, C., & Gwizdka, J. (2020). An Eye-Tracking Study of Differences in Reading Between Automated and Human-Written News. In F. D. Davis, R. Riedl, J. Vom Brocke, P.-M. Léger, A. B. Randolph, & T. Fischer (Eds.), Information Systems and Neuroscience (Vol. 43, pp. 100–110). Springer International Publishing. https://doi.org/10.1007/978-3-030-60073-0_12 Cite
Jia, C., & Gwizdka, J. (2020). An eye-tracking study of differences in reading between automated and human-written news. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, A. Randolph, & T. Fischer (Eds.), NeuroIS’2020. Cite
Gwizdka, J., & Chang, Y.-S. (2020). Search Results Viewing Behavior vis-à-vis Relevance Criteria. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, A. Randolph, & T. Fischer (Eds.), Information Systems and Neuroscience (pp. 181–188). Springer International Publishing. https://doi.org/10.1007/978-3-030-28144-1_20 Cite
Gwizdka, J., & Dillon, A. (2020). Eye-Tracking as a Method for Enhancing Research on Information Search. In W. T. Fu & H. van Oostendorp (Eds.), Understanding and Improving Information Search: A Cognitive Approach (pp. 161–181). Springer International Publishing. https://doi.org/10.1007/978-3-030-38825-6_9 Cite
Bhattacharya, N., Li, Q., & Gurari, D. (2019, October). Why Does a Visual Question Have Different Answers? The IEEE International Conference on Computer Vision (ICCV). Cite
Soboczenski, F., Trikalinos, T. A., Kuiper, J., Bias, R. G., Wallace, B. C., & Marshall, I. J. (2019). Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study. BMC Medical Informatics & Decision Making, 19(1), N.PAG-N.PAG. rzh. https://doi.org/10.1186/s12911-019-0814-z Cite
Sun, Y., Zhang, Y., Gwizdka, J., & Trace, C. B. (2019). Consumer Evaluation of the Quality of Online Health Information: Systematic Literature Review of Relevant Criteria and Indicators. Journal of Medical Internet Research, 21(5), e12522. https://doi.org/10.2196/12522 Cite
Gwizdka, J., Zhang, Y., & Dillon, A. (2019). Using the eye-tracking method to study consumer online health information search behaviour. Aslib Journal of Information Management, 71(6), 739–754. https://doi.org/10.1108/AJIM-02-2019-0050 Cite
Ebeid, I. A., Bhattacharya, N., Gwizdka, J., & Sarkar, A. (2019). Analyzing Gaze Transition Behavior Using Bayesian Mixed Effects Markov Models. Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, 5:1-5:5. https://doi.org/10.1145/3314111.3319839 Cite
Bhattacharya, N., & Gwizdka, J. (2019). Measuring Learning During Search: Differences in Interactions, Eye-Gaze, and Semantic Similarity to Expert Knowledge. Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, 63–71. https://doi.org/10.1145/3295750.3298926 Cite
Gwizdka, J. (2019). Exploring Eye-Tracking Data for Detection of Mind-Wandering on Web Tasks. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, & A. B. Randolph (Eds.), Information Systems and Neuroscience (pp. 47–55). Springer International Publishing. https://doi.org/10.1007/978-3-030-01087-4_6 Cite
Gwizdka, J., Moshfeghi, Y., & Wilson, M. L. (2019). Introduction to the special issue on neuro-information science. Journal of the Association for Information Science and Technology, 70(9), 911–916. https://doi.org/10.1002/asi.24263 Cite
Bilal, D., & Gwizdka, J. (2018). Children’s query types and reformulations in Google search. Information Processing & Management, 54(6), 1022–1041. https://doi.org/10.1016/j.ipm.2018.06.008 Cite
Gwizdka, J. (2018). Inferring Web Page Relevance Using Pupillometry and Single Channel EEG. In F. D. Davis, R. Riedl, J. vom Brocke, P.-M. Léger, & A. B. Randolph (Eds.), Information Systems and Neuroscience (74; pp. 175–183). Springer International Publishing. https://doi.org/10.1007/978-3-319-67431-5_20 Cite
Bhattacharya, N., & Gwizdka, J. (2018). Relating Eye-tracking Measures with Changes in Knowledge on Search Tasks. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, 62:1-62:5. https://doi.org/10.1145/3204493.3204579 Cite
Chang, Y.-S., & Gwizdka, J. (2018). Relevance criteria dynamics: A study of online news selection on SERPs. Proceedings of the Association for Information Science and Technology, 55(1), 768–769. https://doi.org/10.1002/pra2.2018.14505501108 Cite
Gwizdka, J. (2018). Neuro-physiological data as a source of evaluation metrics for personalized IR. Proceedings of the Workshop on Evaluation of Personalisation in Information Retrieval - WEPIR’2018 Held at ACM SIGIR CHIIR’2018. Workshop on Evaluation of Personalisation in Information Retrieval - WEPIR’2018, New Brunswick, NJ, USA. Cite